Model Predictive Control for Formation Flying Spacecraft

نویسندگان

  • Louis Scott Breger
  • Edward M. Greitzer
چکیده

Formation flying is an enabling technology for many future space missions. This thesis addresses some of the key dynamics and control issues expected in future missions by pursuing two areas of advancement: extensions of relative linear dynamics models and assessment and mitigation of sensor noise effects on control systems. Relative dynamics models play an important role in finding drift-free initial conditions for spacecraft formations and for designing feedback controllers. This thesis presents extensions to the equations of relative motion expressed in both Cartesian reference frames and Keplerian orbital elements, including new initialization techniques for widely spaced passive apertures with very general formation configurations. Also, a new linear timevarying form of the equations of relative motion is developed from Gauss’ Variational Equations, and the linearizing assumptions for these equations are shown to be consistent with typical formation flying scenarios. The second area considers the impact of sensor noise, predicted by several researchers to have a significant effect on the fuel-use for formation flying control. This thesis analyzes the impact of carrier-phase differential GPS sensor noise using a new analytical method for predicting the effects of disturbances on a model predictive control formulation. Previous work used an “open-loop” planning approach to achieve robustness in the presence of sensor noise, but was limited to short planning horizons. This thesis employs a “closed-loop” approach which accounts for future replanning, enabling longer planning horizons and more general terminal constraints. This MPC formulation guarantees the robustness of the planning system to both process and sensing noise with fuel costs that are shown to be comparable to the previous approach. Thesis Supervisor: Jonathan P. How Title: Associate Professor

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fuzzy Sliding Mode for Spacecraft Formation Control in Eccentric Orbits

The problem of relative motion control for spacecraft formation flying in eccentric orbits is considered in this paper. Due to the presence of nonlinear dynamics and external disturbances, a robust fuzzy sliding mode controller is developed. The slopes of sliding surfaces of the conventional sliding mode controller are tuned according to error states using a fuzzy logic and reach the pre-define...

متن کامل

GVE-Based Dynamics and Control for Formation Flying Spacecraft

Formation flying is an enabling technology for many future space missions. This paper presents extensions to the equations of relative motion expressed in Keplerian orbital elements, including new initialization techniques for general formation configurations. A new linear time-varying form of the equations of relative motion is developed from Gauss’ Variational Equations and used in a model pr...

متن کامل

Dynamics of Space Free-Flying Robots with Flexible Appendages

A Space Free-Flying Robot (SFFR) includes an actuated base equipped with one or more manipulators to perform on-orbit missions. Distinct from fixed-based manipulators, the spacecraft (base) of a SFFR responds to dynamic reaction forces due to manipulator motions. In order to control such a system, it is essential to consider the dynamic coupling between the manipulators and the base. Explicit d...

متن کامل

Aas 00-109 Precise Formation Flying Control of Multiple Spacecraft Using Carrier-phase Differential Gps1

Formation flying is a key technology for deep space and orbital applications that involve multiple spacecraft operations. Imaging and remote sensing systems based on radio interferometry and SAR require very precise (subwavelength) aperture knowledge and control for accurate relative data collection and processing. Closely tied with the Orion and TechSat21 projects, this work describes the ongo...

متن کامل

A Decentralized Scheme for Spacecraft Formation Flying via the Virtual Structure Approach

Built on the combined strength of decentralized control and the recently introduced virtual structure approach, a decentralized formation scheme for spacecraft formation flying is presented in this paper. Following a decentralized coordination architecture via the virtual structure approach, decentralized formation control strategies are introduced, which are appropriate when a large number of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000